Posts

Clinical Examination of Superior Labral Tears – What is the Best Special Test for a SLAP Tear?

What is the best special test for a SLAP tear?  There are many options all with varying efficacy, however, without a proper understanding of the different types of SLAP tears and mechanisms of injury, it’s difficult to select the best special test for SLAP tears.

Remember, SLAP tears are just one type of shoulder labral tears, as the superior labrum is just a portion of the glenoid labrum.

Clinical examination to detect SLAP lesions is often difficult because of the common presence of concomitant pathology in patients presenting with this type of condition. Andrews has shown that 45% of patients (and 73% of baseball pitchers) with superior labral lesions have concomitant partial thickness tears of the supraspinatus portion of the rotator cuff.  Mileski and Snyder reported that 29% of their patients with SLAP lesions exhibited partial thickness rotator cuff tears, 11% complete rotator cuff tears, and 22% Bankart lesions of the anterior glenoid.

The clinician should keep in mind that while labral pathologies frequently present as repetitive overuse conditions, such as those commonly seen in overhead athletics, the patient may also describe a single traumatic event such as a fall onto the outstretched arm or an episode of sudden traction, or a blow to the shoulder.  This is an extremely important differentiation you need to make when selecting which tests you should perform.

A wide variety of potentially useful special test maneuvers have been described to help determine the presence of labral pathology.  Let’s review some of them now.

This article is part of a 4-part series on SLAP Lesions

Special Tests for a SLAP Tear

There are literally dozens of special tests for SLAP tears of the shoulder.  I am going to share some of the most popular SLAP tests.

Active Compression Test

active compression SLAP testThe active compression test is used to evaluate labral lesions and acromioclavicular joint injuries. This could be the most commonly performed test, especially in orthopedic surgeons.  I am not sure why, though, I do not think it is the best.

The shoulder is placed into approximately 90 degrees of elevation and 30 degrees of horizontal adduction across the midline of the body. Resistance is applied, using an isometric hold, in this position with both full shoulder internal and external rotation (altering humeral rotation
against the glenoid in the process). A positive test for labral involvement is when pain is elicited when testing with the shoulder in internal rotation and forearm in pronation (thumb pointing toward the floor). Symptoms are typically decreased when tested in the externally rotated position or the pain is localized at the acromioclavicular (AC) joint.

O’Brien et al found this maneuver to be 100% sensitive and 95% specific as it relates to assessing the presence of labral pathology.  These results are outstanding, maybe too outstanding. Pain provocation using this test is common, challenging the validity of the results. In my experience, the presence of deep and diffuse glenohumeral joint pain is most indicative of the presence of a SLAP lesion. Pain localized in the AC joint or in the posterior rotator cuff is not specific for the presence of a SLAP lesion. The posterior shoulder symptoms are indicative of provocative strain on the rotator cuff musculature when the shoulder is placed in this position.

The challenging part of this test is that many patients will be symptomatic from overloading their rotator cuff in this disadvantageous position.

  • Sensitivity: 47-100%, Specificity: 31-99%, PPV: 10-94%, NPV: 45-100% (a lot of variability between various authors)

Biceps Load Test

The biceps load testBiceps Load SLAP Test involves placing the shoulder in 90 degrees of abduction and maximally externally rotated. At maximal external rotation and with the forearm in a supinated position, the patient is instructed to perform a biceps contraction
against resistance. Deep pain within the shoulder during this contraction is indicative of a SLAP lesion.
The original authors further refined this test with the description of the biceps load II maneuver. The examination technique is similar, although the shoulder is placed into a position of 120 degrees of abduction rather than the originally described 90 degrees.  The biceps load II test was noted to have greater sensitivity than the original test.  I like both of these tests and usually perform them both.
  • Sensitivity: 91%, Specificity: 97%, PPV: 83%, NPV: 98% for Biceps Load I; Sensitivity: 90%, Specificity: 97%, PPV: 92%, NPV: 96% for Biceps Load II

Compression Rotation Test

Compression Rotation SLAP TestThe compression-rotation test is performed with the patient in the supine position. The glenohumeral joint is manually compressed through the long axis of the humerus while the humerus is passively rotated back and forth in an attempt to trap the labrum within the joint. This is typically performed in a variety of small and large circles while providing joint compression when performing this maneuver, in an attempt to grind the labrum between the glenoid and the humeral head. Furthermore, the examiner may attempt to detect anterosuperior labral lesions by placing the arm in a horizontally abducted position while providing an anterosuperior directed force. In contrast, the examiner may also horizontally adduct the humerus and provide a posterosuperiorly directed force when performing this test.  I think of this test as “exploring” the joint for a torn labrum.  It is hit or miss for me.

  • Sensitivity: 24%, Specificity: 76%, PPV: 90%, NPV: 9%

Dynamic Speed’s Test

dynamic speeds SLAP testThe Speed’s biceps tension test has been found to accurately reproduce pain in instances of SLAP lesions.  I have personally not seen this to be true very often.

It is performed by resisting downwardly applied pressure to the arm when the shoulder is positioned in 90 degrees of forward elevation with the elbow extended and forearm supinated. Clinically, we also perform a new test for SLAP lesions.

Kevin Wilk and I developed a variation of the original Speed’s test, which we refer to as the “Dynamic Speed’s Test.”  (I came up with the name, what do you think?)  During this maneuver, the examiner provides resistance against both shoulder elevation and elbow flexion simultaneously as the patient elevates the arm overhead. Deep pain within the shoulder is typically produced with shoulder elevation above 90 degrees if this test is positive for labral pathology.

Anecdotally, we have found this maneuver to be more sensitive than the originally described static Speed’s test in detecting SLAP lesions, particularly in the overhead athlete.  To me, it seems like you only get symptoms with greater degrees of elevation, making the original Speed’s Test less sensitive in my hands.

  • Sensitivity: 90%, Specificity: 14%, PPV: 23%, NPV: 83% for the Speed’s test

Clunk Test and Crank Tests

clunk crank slap testThe clunk test is performed with the patient supine. The examiner places one hand on the posterior aspect of the glenohumeral joint while the other grasps the bicondylar aspect of the humerus at the elbow. The examiner’s proximal hand provides an anterior translation of the humeral head while simultaneously rotating the humerus externally with the hand holding the elbow.  The mechanism of this test is similar to that of a McMurray’s test of the knee menisci, where the examiner is attempting to trap the torn labrum between the glenoid and the humeral head. A positive test is produced by the presence of a clunk or grinding sound and is indicative of a labral tear.

The crank test can be performed with the patient either sitting or supine. The shoulder is elevated to 160 degrees in the plane of the scapula. An axial load is then applied by the examiner while the humerus is internally and externally rotated in this position. A positive test typically elicits pain with external rotation. Symptomatic clicking or grinding may also be present during this maneuver.  These tests seem to do well with finding a bucket-handle tear of from a Type III or Type IV SLAP lesion more than anything else for me.

  • Sensitivity: 39-91%, Specificity: 56-93%, PPV: 41-94%, NPV: 29-90%

2 New(er) Special Tests for SLAP Lesions

In addition to the classic SLAP tests that have been described, there are two additional tests that gained popularity more recently.

I wanted to share a video that I have on YouTube that demonstrates these two tests. These were actually published in a paper I wrote in JOSPT a few years ago, but I have modified them a little and wanted to share. These two tests are both excellent at detecting peel-back SLAP lesions, specifically in overhead throwing athletes, but are useful for any population. I share these two tests because I know that there is a lot of confusion regarding the “best” test. These may not be them, but in my hands, both have been extremely helpful and, more importantly, accurate.

Pronated Load SLAP Test

The first test is the “Pronated Load Test,” it is performed in the supine position with the shoulder abducted to 90° and externally rotated. However, the forearm is in a fully pronated position to increase tension on the biceps and subsequently the labral attachment. When maximal external rotation is achieved, the patient is instructed to perform a resisted isometric contraction of the biceps to simulate the peel-back mechanism. This test combines the active bicipital contraction of the biceps load test with the passive external rotation in the pronated position, which elongates the biceps. A positive test is indicated by discomfort within the shoulder.

Resisted Supination External Rotation SLAP Test

The second test was described by Myers in AJSM, called the “Resisted Supination External Rotation Test.” Dr. Myers was a fellow at ASMI and a good friend of mine, he really wanted to call this the SUPER test (for SUPination ER) but I was one of many that advised him against this for obvious reasons!

During this test, the patient is positioned in 90° of shoulder abduction, and 65-70° of elbow flexion and the forearm in a neutral position. The examiner resists against a maximal supination effort while passively externally rotating the shoulder. Myers noted that this test simulates the peel-back mechanism of SLAP injuries by placing maximal tension on the long head of the biceps by supinating.

Myers’ study of 40 patients revealed that this test had better sensitivity (82.8%), specificity (81.8%), positive predictive value (PPV) (92.3%), negative predictive value (NPV) (64.3%), and diagnostic accuracy (82.5%) compared to the crank test and extremely popular O’Brien’s or active compression test. A positive test is indicated by discomfort within the shoulder.

When Do You Perform These Tests?

Now that you know a bunch of special tests for SLAP tears, the real key is understanding “when” to pick each test.  In my mind, they all are slightly different and may even be better at detecting different types of SLAP lesions.  I have an Inner Circle webinar that discusses this and shows you my clinical algorithm on how and why I perform special tests to diagnose a SLAP tear:

Learn Exactly How I Evaluate and Treat the Shoulder

shoulder seminarIf you want to learn even more about the shoulder, my online course will teach you exactly how I evaluate and treat the shoulder.  It is packed with tons of educational content that will help you master the shoulder, including detailed information on the clinical examination and treatment of SLAP tears.

Special Tests to Diagnose SLAP Tears

The latest Inner Circle webinar recording on Special Tests to Diagnose SLAP Tears is now available.

Special Tests to Diagnose SLAP Tears

Special Tests to Diagnose SLAP Tears

This month’s Inner Circle webinar is on Special Tests to Diagnose SLAP Tears.  In this presentation, I review the many, many different SLAP special tests that exist and explain when and why you would choose certain ones for different people.

This webinar will cover:

  • Why there are so many different SLAP special tests
  • The common mechanisms of injury for SLAP tears
  • Why a good subjective history should lead your clinical examination
  • How to choose specific special tests for specific people
  • How to perform my most commonly used SLAP tests

To access this webinar:

Rehabilitation Protocol Following Arthroscopic Rotator Cuff Repair

There continues to be great debate over the most appropriate rehabilitation progression following rotator cuff repair.  We’ve done a great job improving our strategies for shoulder impingement treatment, however, rotator cuff injuries do continue to progress to full thickness tears.

Although our surgical techniques have gradually progressed from full open repairs, to smaller mini-open repairs, to the current standard all-arthroscopic repairs, many clinicians continue to utilize the same rehabilitation guidelines from past invasive procedures.

And more confusing is the lack of consensus among surgeons regarding the optimal postoperative rehabilitation protocol following arthroscopic rotator cuff repair.  Protocols can vary as drastically as beginning gentle passive range of motion and isometric exercises post-operative week 1 to delaying 12 weeks for the initiation of similar exercises.

I want to share the postoperative protocol that I have developed with Kevin Wilk and James Andrews.

It details the postoperative guidelines that we have used since the shift to arthroscopic rotator cuff repairs several years ago. While there is still a lack of efficacy studies, these guidelines have proven to us to be both safe and effective in the rehab of 1000’s of patients at our clinics.

Before downloading the protocol, I want to explain the goals of rehabilitation and what I believe are the 3 keys to rehabilitation. These principles are the cornerstone behind the protocol you are about to download.

Goals of Rehabilitation Following Rotator Cuff Repair

When rehabilitating after an arthroscopic rotator cuff repair surgery, the main goals of the rehabilitation protocol should be:

  • Protect the integrity of the rotator cuff repair
  • Minimize postoperative pain and inflammation
  • Restore passive range of motion
  • Restore strength and dynamic stability of the shoulder
  • Restore active range of motion
  • Return to functional activities

Pretty simple, right?  When you lay it out like that, we simply combine those goals with what we know about the basic science of healing tissue and you can fill in the gaps and individualize a program based on the patient and your treatment preferences.

The 3 Most Important Keys to Rotator Cuff Repair Rehabilitation

Now that you understand the goals, I want to share what I consider the 3 most important keys to rotator cuff repair rehabilitation.  Follow the goals above and focus on these 3 keys and you’ll be well on your way to full functional recovery:

  1. shoulder-shrug-signRestore full passive ROM quickly. It is extremely easy to lose motion following surgery. In my opinion this is caused by scarring in the subacromial space as well as loss of the redundancy of the glenohumeral capsule with immobilization. This is one of the common “rookie mistakes” I see with students and new graduates. Passive range of motion should be initiated immediately following surgery in a gradual and cautious fashion. Studies have shown that passive range of motion into flexion and external rotation actually decreases strain in the rotator cuff repair (still need to be cautious with adduction, extension, and internal rotation).
  2. Restore dynamic humeral head control. This is likely the most important goal of postoperative rehabilitation, other than maintaining the integrity of the repair. What this means is to restore the rotator cuff’s ability to center the humeral head within the glenoid fossa. Have you ever seen a patient following repair that had a shoulder “shrug” sign? That is caused by the inability of the cuff to compress the humeral head and the resultant superior humeral head migration. This is why it is imperative to begin gentle isometrics, rhythmic stabilization drills, and other drills to re-educate the rotator cuff.
  3. Maximize external rotation strength. I often refer to external rotation as the key to the shoulder. Weakness of ER is common in almost every pathology and strengthening of the area is extremely important to balance the anterior and posterior balance of cuff. Several studies have shown that ER strength takes the longest amount of time to restore after rotator cuff repair. The longer this area is weak, the more difficult it will be to stabilize the joint.

Rehabilitation Protocol Following Arthroscopic Rotator Cuff Repair

physical therapy rehabilitation protocolsIf you are interested in using the protocols that I have helped develop with Kevin Wilk and Dr. James Andrews, we have recently revised and expanded all of our protocols and made them completely online and downloadable.  Our physical therapy rehabilitation protocols have been published in several journals over the years and based on our decades of research, scientific evidence, and experience.

They are the most widely used and respected rehabilitation protocols today.

Want to see what our protocols include?  You can download our 3 most popular protocols for FREE:

  • Accelerated rehabilitation following ACL reconstruction using a patellar tendon autograft
  • Rehabilitation following arthroscopic rotator cuff repair for a type II medium-large sized tear
  • Thrower’s ten exercise program

Free Instant Download

physical therapy rehabilitation protocols online accessOur entire collection includes over 175 nonoperative, preoperative, postoperative protocols for shoulder, elbow, hip, knee, foot, and ankle.  There are several variations of many protocols to account for many specific procedures and concomitant surgeries.  Plus, we have several of our exercise handouts and interval return to sport programs.

If you work in an outpatient orthopedic or sports medicine clinic, these protocols are an invaluable resource to help guide your treatment approach.

Learn More

How do SLAP Tears Occur: Mechanisms of Injury to the Superior Labrum

SLAP tears of the shoulder can occur for a variety of reasons, from a traumatic fall to wear-and-tear over time, to more specific injuries that we see in overhead athletes like baseball players.

But that’s a common question I here often.

Now that we have discussed the different types and classification of SLAP tears to the superior labrum, I wanted to now talk about how these shoulder injuries occur. There are several injury mechanisms that are speculated to be responsible for creating a SLAP lesion. These mechanisms range from single traumatic events to repetitive microtraumatic injuries.

This article is part of a 4-part series on SLAP Lesions

Traumatic SLAP Injuries

mechanism of slap tearTraumatic events, such as falling on an outstretched arm or bracing oneself during a motor vehicle accident, may result in a SLAP lesion due to compression of the superior joint surfaces superimposed with subluxation of the humeral head. Snyder referred to this as a pinching mechanism of injury. Other traumatic injury mechanisms include direct blows, falling onto the point of the shoulder, and forceful traction injuries of the upper extremity.

To be honest with you, I don’t know if this is actually the underlying cause of the SLAP lesion. I have questioned this theory in the past and don’t know the answer, but part of me at least wonders if these patients already had a certain degree of pathology to their superior labrum and the acute injury led to a MRI and diagnosis of a SLAP tear.

Essentially the MRI may have found an old SLAP tear.

Repetitive Overhead Activities

Repetitive overhead activity, such as throwing a baseball and other overhead sports, is another common mechanism of injury frequently responsible for producing SLAP injuries.

This is the type of SLAP lesion that we most often see in our athletes. In 1985, Dr. Andrews first hypothesized that SLAP pathology in overhead throwing athletes was the result of the high eccentric activity of the biceps brachii during the arm deceleration and follow-through phases of the overhead throw. To determine this, they applied electrical stimulation to the biceps during arthroscopic evaluation and noted that the biceps contraction raised the labrum off of the glenoid rim.

Peel Back SLAP Tear

Burkhart and Morgan have since hypothesized a “peel back” mechanism that produces SLAP lesion in the overhead athlete. They suggest that when the shoulder is placed in a position of abduction and maximal external rotation, the rotation produces a twist at the base of the biceps, transmitting torsional force to the anchor.

This mechanism has received a lot of attention and several studies seem to show its accuracy.

Pradham measured superior labral strain in a cadaveric model during each phase of the throwing motion. They noted that increased superior labral strain occurred during the late-cocking phase of throwing.

Another study from ASMI simulated each of these mechanisms using cadaveric models. Nine pairs of cadaveric shoulders were loaded to biceps anchor complex failure in either a position of simulated in-line loading (similar to the deceleration phase of throwing) or simulated peel back mechanism (similar to the cocking phase of overhead throwing). Results showed that 7 of 8 of the in-line loading group failed in the midsubstance of the biceps tendon with 1 of 8 fracturing at the supraglenoid tubercle. However, all 8 of the simulated peel back group failures resulted in a type II SLAP lesion. The ultimate strength of the biceps anchor was significantly different when the 2 loading techniques were compared. The biceps anchor demonstrated significantly higher ultimate strength with the in-line loading (508 N) as opposed to the ultimate strength seen during the peel back loading mechanism (202 N).

You can see photos of the study below.  The first photo is a normal glenoid with the labrum and attaching long head of the biceps.  The second photo is the simulation of the traction and eccentric biceps contraction.  The final photo is simulation of the peel-back lesion.

SLAP injuries example

In theory, SLAP lesions most likely occur in overhead athletes from a combination of these 2 previously described forces. The eccentric biceps activity during deceleration may serve to weaken the biceps-labrum complex, while the torsional peel back force may result in the posterosuperior detachment of the labral anchor.

shoulder seminarLearn Exactly How I Evaluate and Treat the Shoulder

If you want to learn even more about the shoulder, my online course will teach you exactly how I evaluate and treat the shoulder.  It is packed with tons of educational content that will help you master the shoulder, including detailed information on the clinical examination and treatment of SLAP tears.

What Exactly Is a SLAP Tear? Top 5 Things You Need to Know About a Superior Labral Lesion

Superior Labral SLAP TearA SLAP tear is an injury to the superior part of the labrum in the shoulder.  The term SLAP stands for Superior Labral tear Anterior to Posterior.  This is a very common diagnosis for shoulder injuries.  There many different variations of SLAP tears, which have different levels of severity and treatment strategies.  In the past, surgeons would want to operate on all SLAP tears but we have learned that some do well without surgery.  In fact, some SLAP tears aren’t even worrisome .

Understanding how a SLAP lesion occurs and what exactly is happening pathologically is extremely important to diagnose and treat these shoulder injuries appropriately.

This article is part of a 4-part series on SLAP Lesions

Classification of SLAP Lesions

As you can see in the figure, the long head of the biceps tendon inserts directly into the superior labrum.  There are several variations of injuries that can occur to the superior labrum where the biceps anchor attaches.

Following a retrospective review of 700 shoulder arthroscopies, Snyder et al: Arthroscopy 1990, identified 4 types of superior labrum lesions involving the biceps anchor. Collectively they termed these SLAP lesions, in reference to their anatomic location: Superior Labrum extending from Anterior to Posterior. This was the original definition but as we continue to learn more about SLAP tears, they certainly do not always extend from anterior to posterior. But, the most important concept to know is that a SLAP lesion is an injury to the superior labrum near the attachment of the biceps anchor.

SLAP Tear Classification

Type I SLAP Lesions

Type I SLAP lesions were described as being indicative of isolated fraying of the superior labrum with a firm attachment of the labrum to the glenoid. These lesions are typically degenerative in nature. At this time, it is currently believed that the majority of the active population may have a Type I SLAP lesion and this is often not even considered pathological by many surgeons.

Type II SLAP Lesions

Type II SLAP lesions are characterized by a detachment of the superior labrum and the origin of the tendon of the long head of the biceps brachii from the glenoid resulting in instability of the biceps-labral anchor. These is the most common type of SLAP tear. When we receive a script from a surgeon to treat a “SLAP repair” he or she is more than likely talking about a Type II SLAP and surgery to re-attach the labrum and biceps anchor.

Three distinct sub-categories of type II SLAP lesions have been further identified by Morgan et al: Arthroscopy ’90. They reported that in a series of 102 patients undergoing arthroscopic evaluation 37% presented with an anterosuperior lesion, 31% with a posterosuperior lesion, and 31% exhibited a combined anterior and superior lesion.

These findings are consistent with my clinical observations of patients. Different types of patients and mechanisms of injuries will result in slightly different Type II lesions. For example, the majority of overhead athletes present with posterosuperior lesions while individuals who have traumatic SLAP lesions typically present with anterosuperior lesions. These variations are important when selecting which special tests to perform based on the patient’s history and mechanism of injury.

Type III SLAP Lesions

Type III SLAP lesions are characterized by a bucket-handle tear of the labrum with an intact biceps insertion. The labrum tears and flips into the joint similar to a meniscus. The important concept here is that the biceps anchor is attached, unlike a Type II.

Type IV SLAP Lesions

Type IV SLAP lesions have a bucket-handle tear of the labrum that extends into the biceps tendon. In this lesion, instability of the biceps-labrum anchor is also present, similar to that seen in the type II SLAP lesion. This is basically a combination of a Type II and III lesion.

What is complicated about this classification system is the fact that the Type I-IV scale is not progressively more severe. For example a Type III SLAP lesion is not bigger, or more severe, or indicative to more pathology than a Type II SLAP lesion.
To further complicate things, Maffet et al: AJSM ’95 noted that 38% of the SLAP lesions identified in their retrospective review of 712 arthroscopies were not classifiable using the I-IV terminology previously defined by Snyder. They suggested expanding the classification scale for SLAP lesions to a total of 7 categories, adding descriptions for types V-VII.
  • Type V SLAP lesions are characterized by the presence of a Bankart lesion of the anterior capsule that extends into the anterior superior labrum.
  • Type VI SLAP lesion involve a disruption of the biceps tendon anchor with an anterior or posterior superior labral flap tear.
  • Type VII SLAP lesions are described as the extension of a SLAP lesion anteriorly to involve the area inferior to the middle glenohumeral ligament.

These 3 types typically involve a concomitant pathology in conjunction with a SLAP lesion. Although they provided further classification, this terminology has not caught on and is not frequently used. For example, most people will refer to a Type V SLAP as a Type II SLAP with a concomitant Bankart lesion.

Since then there have been even more classification types described in the literature, up to at least 10 that I know of, but don’t worry, nobody really uses them.

Top 5 things you need to know about classifying SLAP lesions

Here’s all you need to know about classifying SLAP tears:

  1. Just worry about Type I-IV SLAP lesions and realize that any classification system above Type IV just means that there was a concomitant injury in addition to the SLAP tear.
  2. You can break down and group Type I and Type III lesions together. Both involved degeneration of the labrum but the biceps anchor is attached. Thus, these are not unstable SLAP lesions and are not surgically repaired. This makes surgery (just a simple debridement) and physical therapy easier.
  3. You can also break down and group Type II and Type IV lesions together. Both involve a detached biceps anchor and require surgery to stabilize the biceps anchor. Type IV SLAP tears are much more uncommon and will involve the repair and a debridement of the bucket handle tear.
  4. Type II lesions are by far the most common that you will see in the clinic and are almost always what a surgeon is referring to when speaking of a “SLAP repair.”  That being said, we are seeing trends towards NOT repairing SLAP II lesions, as they may be more common than once expected.  This is especially true in overhead athletes.
  5. We all may have a Type I lesion, it is basically just fraying and degeneration of the labrum.

Learn Exactly How I Evaluate and Treat the Shoulder

mike reinold shoulder seminar

If you want to learn even more about the shoulder, my online course at will teach you exactly how I evaluate and treat the shoulder.  It is packed with tons of educational content that will help you master the shoulder, including detailed information on the clinical examination and treatment of SLAP tears.

Shoulder Impingement – 3 Keys to Assessment and Treatment

Shoulder impingement really is a pretty broad term that most of us likely take for granted.  It has become such a junk term, such as “patellofemoral pain,” especially with physicians.  It seems as if any pain originated from around the shoulder could be labeled as “shoulder impingement” for some reason, as if that diagnosis is helpful to determine the treatment process.

Unfortunately, There is no magical “shoulder impingement protocol” that you can pull out of your notebook and apply to a specific person. [Click to Tweet]

I wish it were the simple.

A thorough examination is still needed.  Each person will likely present differently, which will require a variations on how you approach their rehabilitation.

But the real challenge when working with someone with shoulder impingement isn’t figuring out they have shoulder pain, that’s fairly obviously.  It’s figuring out why they have shoulder pain.

Shoulder Impingement: 3 Keys to Assessment and Treatment

To make the treatment process a little more simple, there are three things that I typically consider to classify and differentiate shoulder impingement.

  1. Location of impingement
  2. Structures involved
  3. Cause of impingement

Each of these can significantly vary the treatment approach and how successful you are helping each person.

Location of Impingement

The first thing to consider when evaluating someone with shoulder impingement is the location of impingement.  This is generally in reference to the side of the rotator cuff that the impingement is located, either the bursal side or articular side.

shoulder impingement assessment and treatment

See the photo of a shoulder MRI above.  The bursal side is the outside of the rotator cuff, shown with the red arrow.  This is probably your “standard” subacromial impingement that everyone refers to when simply stating “shoulder impingement.”  The green arrow shows the inside, or articular surface, of the rotator cuff.  Impingement on this side is termed “internal impingement.”

The two are different in terms of cause, evaluation, and treatment, so this first distinction is important.  More about these later when we get into the evaluation and treatment treatment.

Impinging Structures

To me, this is more for the bursal sided, or subacromial, impingement and refers to what structure the rotator cuff is impinging against.  As you can see in the pictures below (both side views), your subacromial space is pretty small without a lot if room for error.  In fact, there really isn’t a “space”, there are many structures running in this area including your rotator cuff and subacromial bursa.

Shoulder impingement

You actually “impinge” every time you move your arm.  Impingement itself is normal and happens in all of us, it is when it becomes excessive or abnormal that pathology occurs.

I try to differentiate between acromial and coracoacromial arch impingement, which can happen in combination or isolation.  There are fairly similar in regard to assessment and treatment, but I would make a couple of mild modifications for coracoacromial impingement, which we will discuss below.

Cause of Impingement

The next thing to look at is the actual reason why the person is experiencing shoulder impingement.  There are two main classifications of causes, that I refer to as “primary” or “secondary”shoulder  impingement.

Primary impingement means that the impingement is the main problem with the person.  A good example of this is someone that has impingement due to anatomical considerations, with a hooked tip of the acromion like this in the picture below.  Many acromions are flat or curved, but some have a hook or even a spur attached to the tip (drawn in red):

shoulder impingement

Secondary impingement means that something is causing impingement, perhaps their activities, posture, lack of dynamic stability, or muscle imbalances are causing the humeral head to shift in it’s center of rotation and cause impingement.  The most simply example of this is weakness of the rotator cuff.

The rotator cuff and larger muscle groups, like the deltoid, work together to move your arm in space.  The rotator cuff works to steer the ship by keeping the humeral head centered within the glenoid.  The deltoid and larger muscles power the ship and move the arm.

Both muscles groups need to work together.  If rotator cuff weakness is present, the cuff may lose it’s ability to keep the humeral head centered.  In this scenario, the deltoid will overpower the cuff and cause the humeral head to migrate superiorly, thus impinging the cuff between the humeral head and the acromion:

evaluation and treatment of shoulder impingement

Other common reasons for secondary impingement include mobility restrictions of the shoulder, scapula, and even thoracic spine.  We see this a lot at Champion.  In the person below, you can see that they do not have full overhead mobility, yet they are trying to overhead press and other activities in the gym, flaring up their shoulder.

shoulder impingement mobility

If all we did with this person was treat the location of the pain in his anterior shoulder, our success will be limited.  He’ll return to gym and start the process all over if we don’t restore this mobility restriction.

The funny thing about this is that people are almost never aware that they even have this limitation until you show them.

Differentiating Between the Types of Shoulder Impingement

In my online program on the Evidence Based Evaluation and Treatment of the Shoulder, I talk about different ways to assess shoulder impingement that may impact your rehab or training.  There are specific tests to assess each type of impingement we discussed above.

The two most popular tests for shoulder impingement are the Neer test and the Hawkins test.  In the Neer test (below left), the examiner stabilizes the scapula while passively elevating the shoulder, in effect jamming the humeral head into the acromion.  In the Hawkins test (below right) the examiner elevates the arm to 90 degrees of abduction and forces the shoulder into internal rotation, grinding the cuff under the subacromial arch.

Shoulder impingement tests

You can alter these tests slightly to see if they elicit different symptoms that would be more indicative to the coracoacromial arch type of subacromial impingement.  This would involve the cuff impingement more anteriorly so the tests below attempt to simulate this area of vulnerability.

The Hawkins test (below left) can be modified and performed in a more horizontally adducted position.  Another shoulder impingement test (below right) can be performed by asking the patient to grasp their opposite shoulder and to actively elevate the shoulder.

how to assess shoulder impingement

There is a good chance that many patients with subacromial impingement may be symptomatic with all of the above tests, but you may be able to detect the location of subacromial impingement (acromial versus coracoacromial arch) by watching for subtle changes in symptoms with the above four tests.

Internal impingement is a different beast.

This type of impingement, which is most commonly seen in overhead athletes, is typically the result of some hyperlaxity in the anterior direction.  As the athlete comes into full external rotation, such as the position of baseball pitch, tennis serve, etc., the humeral head slides anterior slightly causing the undersurface of the cuff to impingement on the inside against the posterior-superior glenoid rim and labrum.  This is what you hear of when baseball players have “partial thickness rotator cuff tears” the majority of time.

shoulder internal impingement

The test for this is simple and is exactly the same as an anterior apprehension test.  The examiner externally rotates the arm at 90 degrees abduction and watches for symptoms.  Unlike the shoulder instability patient, someone with internal impingement will not feel apprehension or anterior symptoms.  Rather, they will have a very specific point of tenderness in the posterosuperior aspect of the shoulder (below left).  Ween the examiner relocates the shoulder by giving a slight posterior glide of the humeral head, the posterosuperior pain diminishes (below right).

how to assess shoulder internal impingement

3 Keys to Treating Shoulder Impingement – How Does Treatment Vary?

There are three main keys from the above information that you can use to alter your treatment and training programs based on the type of impingement exhibited:

Subacromial Impingement Treatment

To properly treat, you should differentiate between acromial and coracoacromial impingement.  Treatment is essentially the same between these two types of subacromial impingement, however, with coracoacromial arch impingement, you need to be cautious with horizontal adduction movements and stretching.  This is unfortunate as the posterior soft tissue typically needs to be stretched in these patients, but you can not work through a pinch with impingement!

A “pinch” is impingement of an inflamed structure!

Also, I would avoid elevation in the sagittal plane or horizontal adduction exercises.

Primary Versus Secondary Shoulder Impingement

This is an important one and often a source of frustration in young clinicians.  If you are dealing with secondary impingement, you can treat the persons symptoms all you want, but they will come back if you do not address the route of the pathology!

I do treat their symptoms, that is why they have come to see me.  I want to reduce inflammation.  However, this should not be the primary focus if you want longer term success.

This is where a more global look at the patient, their posture, muscle imbalances, and movement dysfunction all come into play.  Break through and see patients in this light and you will see much better outcomes.

A good discussion of the activities that are causing their symptoms may also shed some light on why they are having shoulder pain.  Again, using the example above, if you don’t have full mobility and try to force the shoulder through this tightness you are going to likely cause some issues.  This is especially true if you add speed, loading, and repetition to elevation, such as during many exercises.

Internal Impingement

One thing to realize with internal impingement is that this is pretty much a secondary issue.  It is going to occur with any cuff weakness, fatigue, or loss of the ability to dynamically stabilize.   The athlete will show some hyperlaxity in this athletic “lay back” shoulder position.  Treat the cuff weakness and it’s ability to dynamically stabilize to relieve the impingement.  How to treat internal impingement is a huge topic that I cover in a webinar for my Inner Circle members.

Learn Exactly How I Evaluate and Treat the Shoulder

If you are interested in mastering your understanding of the shoulder, I have my acclaiming online program teaching you exactly how I evaluate and treat the shoulder at ShoulderSeminar.com!

The online program at takes you through an online 8-week program with new content added every week.  You can learn at your own pace in the comfort of your own home.  You’ll learn exactly how I approach:

  • shoulder seminarThe evaluation of the shoulder
  • Selecting exercises for the shoulder
  • Manual resistance and dynamic stabilization drills for the shoulder
  • Nonoperative and postoperative rehabilitation
  • Rotator cuff injuries
  • Shoulder instability
  • SLAP lesions
  • The stiff shoulder
  • Manual therapy for the shoulder

The program offers 21 CEU hours for the NATA and APTA of MA and 20 CEU hours through the NSCA.

Click below to learn more!

large-learn-more

Which is the Best Position to Immobilize the Shoulder After a Dislocation?

Immobilization is commonly performed after acute first time shoulder dislocations.  The goal of immobilization is to protect the shoulder and allow healing in an attempt to minimize recurrent instability down the road, which isn’t uncommon.

Unfortunately, once you dislocate your shoulder, you have a decent chance of it happening again.


Traditionally, immobilization has occurred with the shoulder in a sling by the person’s side.  This puts the shoulder in adduction and internal rotation.  Considering that most anterior dislocations occur with the arm in an abducted and externally rotated position, this seemed to make sense to take stress of the tissue.

However, a study was published in 2001 by Itoi in the Journal of Bone and Joint Surgery discussing a new position of immobilization in shoulder external rotation.  

The authors used MRI to examine the capsule in both the position of shoulder internal rotation and external rotation.  They showed that the anterior capsule tissue was better approximated in the externally rotated position.  Other recent studies have agreed with these results.

which is the best position to immobilize the shoulder after a dislocation

This was an interesting finding and lead to a follow up study by the same group that was published in 2003 in the Journal of Shoulder and Elbow Surgery.  In this study, the authors prospectively assessed the recurrent instability rate in people that were immobilized in either internal or external rotation.

The results showed that there was a 30% recurrent instability rate in those immobilized in the traditional internally rotated sling position, compared to 0% in those immobilized in external rotation.

 

Which Position is Best to Immobilize the Shoulder After a Dislocation?

Based on these two studies, many began immobilizing the shoulder after dislocation in this position of external rotation.  There are now many shoulder immobilization braces on the market that position the shoulder in ER.

shoulder immobilization in external rotation

Since these two studies many have tried to replicate the original results of Itoi with mixed results.  

I must admit that any time a novel technique, clinical test, or approach is introduced in the literature and the original author has a 100% success rate, I proceed a little cautiously until others have replicated their research.

Clinically, there appears to be no difference in recurrence rates when comparing immobilizing the shoulder in either internal or external rotation.  This has been shown in several studies.

A recent meta-analysis was published in the American Journal of Sports Medicine that reviewed 6 randomized control trials and found no significant difference in recurrence rate.  This was consistent with a prior systematic review of the Cochran Database, which agreed.

 

Basic Science Vs. Clinical Studies

This is an interesting situation, where basic science studies appear to show that immobilization in external rotation may be theoretically more beneficial after shoulder dislocations, but clinical studies have not shown any benefit or reduced occurrence of recurrent instability.  It appears anatomically that immobilizing in a position of external rotation would put the labral tissue in the best position to heal.

I personally see this as a challenging study as many people are simply not compliant with immobilization after dislocations, especially once the acute trauma tends to settle down.  One particular study reported a compliance rate between 53-72%.  

That’s not great.

As of now, it seems like we need more research to make a more definitive decision.  However, keep in mind that these studies have not shown immobilization in internal rotation to be MORE beneficial, they just showed no difference between the two.  So as of now, if I dislocated my shoulder tomorrow, I would probably immobilize myself in external rotation based on the anatomical studies that show better tissue approximation.

For those out there, what are you seeing clinically in your area?  I would imagine this varies a lot based on your location and physicians you work with each day.  Are docs still immobilizing people in external rotation?  Have you found outcomes to differ from those immobilized in internal rotation?  Comment below and let me know.

 

How Rehab Differs Between Traumatic and Atraumatic Shoulder InstabilityHow Treatment Differs Between Atraumatic and Traumatic Shoulder Instability

If you are interested in learning more on this topic, I have an Inner Circle presentation on How Treatment Differs Between Atraumatic and Traumatic Shoulder Instability.  We discuss this topic, plus a lot more, in much greater detail.

How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability

The latest Inner Circle webinar recording on How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability is now available.

How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability

How Rehab Differs Between Traumatic and Atraumatic Shoulder InstabilityThis month’s Inner Circle webinar is on How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability.  In this presentation, I highlight the major differences in the evaluation and treatment process.

This webinar will cover:

  • The difference between traumatic and atraumatic shoulder instability
  • The import factors to consider that will change your rehab progression
  • Should you immobilize or not?
  • The primary focus for rehab for each type of instability

To access this webinar: