Posts

Clinical Examination of Superior Labral Tears – What is the Best Special Test for a SLAP Tear?

**Updated in 2017**

What is the best test for a SLAP tear?  That is a pretty common question that I hear at meetings.

Clinical examination to detect SLAP lesions is often difficult because of the common presence of concomitant pathology in patients presenting with this type of condition. Andrews has shown that 45% of patients (and 73% of baseball pitchers) with superior labral lesions have concomitant partial thickness tears of the supraspinatus portion of the rotator cuff.  Mileski and Snyder reported that 29% of their patients with SLAP lesions exhibited partial thickness rotator cuff tears, 11% complete rotator cuff tears, and 22% Bankart lesions of the anterior glenoid.

The clinician should keep in mind that while labral pathologies frequently present as repetitive overuse conditions, such as those commonly seen in overhead athletics, the patient may also describe a single traumatic event such as a fall onto the outstretched arm or an episode of sudden traction, or a blow to the shoulder.  This is an extremely important differentiation you need to make when selecting which tests you should perform.

A wide variety of potentially useful special test maneuvers have been described to help determine the presence of labral pathology.  Lets review some of them now.

This article is part of a 4-part series on SLAP Lesions

Special Tests for a SLAP Tear

There are literally dozens of special tests for SLAP tears of the shoulder.  I am going to share some of the most popular SLAP tests.

 

Active Compression Test

active compression SLAP testThe active compression test is used to evaluate labral lesions and acromioclavicular joint injuries. This could be the most commonly performed test, especially in orthopedic surgeons.  I am not sure why, though, I do not think it is the best.

The shoulder is placed into approximately 90 degrees of elevation and 30 degrees of horizontal adduction across the midline of the body. Resistance is applied, using an isometric hold, in this position with both full shoulder internal and external rotation (altering humeral rotation
against the glenoid in the process). A positive test for labral involvement is when pain is elicited when testing with the shoulder in internal rotation and forearm in pronation (thumb pointing toward the floor). Symptoms are typically decreased when tested in the externally rotated position or the pain is localized at the acromioclavicular (AC) joint.

O’Brien et al found this maneuver to be 100% sensitive and 95% specific as it relates to assessing the presence of labral pathology.  These results are outstanding, maybe too outstanding. Pain provocation using this test is common, challenging the validity of the results. In my experience, the presence of deep and diffuse glenohumeral joint pain is most indicative of the presence of a SLAP lesion. Pain localized in the AC joint or in the posterior rotator cuff is not specific for the presence of a SLAP lesion. The posterior shoulder symptoms are indicative of provocative strain on the rotator cuff musculature when the shoulder is placed in this position.

The challenging part of this test is that many patients will be symptomatic from overloading their rotator cuff in this disadvantageous position.

  • Sensitivity: 47-100%, Specificity: 31-99%, PPV: 10-94%, NPV: 45-100% (a lot of variability between various authors)

 

Biceps Load Test

The biceps load testBiceps Load SLAP Test involves placing the shoulder in 90 degrees of abduction and maximally externally rotated. At maximal external rotation and with the forearm in a supinated position, the patient is instructed to perform a biceps contraction
against resistance. Deep pain within the shoulder during this contraction is indicative of a SLAP lesion.
The original authors further refined this test with the description of the biceps load II maneuver. The examination technique is similar, although the shoulder is placed into a position of 120 degrees of abduction rather than the originally described 90 degrees.  The biceps load II test was noted to have greater sensitivity than the original test.  I like both of these tests and usually perform them both.
  • Sensitivity: 91%, Specificity: 97%, PPV: 83%, NPV: 98% for Biceps Load I; Sensitivity: 90%, Specificity: 97%, PPV: 92%, NPV: 96% for Biceps Load II

 

Compression Rotation Test

Compression Rotation SLAP TestThe compression-rotation test is performed with the patient in the supine position. The glenohumeral joint is manually compressed through the long axis of the humerus while, the humerus is passively rotated back and forth in an attempt to trap the labrum within the joint. This is typically performed in a variety of small and large circles while providing joint compression when performing this maneuver, in an attempt to grind the labrum between the glenoid and the humeral head. Furthermore, the examiner may attempt to detect anterosuperior labral lesions by placing the arm in a horizontally abducted position while providing an anterosuperior directed force. In contrast, the examiner may also horizontally adduct the humerus and provide a posterosuperiorly directed force when performing this test.  I think of this test as “exploring” the joint for a torn labrum.  It is hit or miss for me.

  • Sensitivity: 24%, Specificity: 76%, PPV: 90%, NPV: 9%

 

Dynamic Speed’s Test

dynamic speeds SLAP testThe Speed’s biceps tension test has been found to accurately reproduce pain in instances of SLAP lesions.  I have personally not seen this to be true very often.

It is performed by resisting downwardly applied pressure to the arm when the shoulder is positioned in 90 degrees of forward elevation with the elbow extended and forearm supinated. Clinically, we also perform a new test for SLAP lesions.

Kevin Wilk and I developed a variation of the original Speed’s test, which we refer to as the “Dynamic Speed’s Test.”  (I came up with the name, what do you think?)  During this maneuver, the examiner provides resistance against both shoulder elevation and elbow flexion simultaneously as the patient  elevates the arm overhead. Deep pain within the shoulder is typically produced with shoulder elevation above 90 degrees if this test is positive for labral pathology.

Anecdotally, we have found this maneuver to be more sensitive than the originally described static Speed’s test in detecting SLAP lesions, particularly in the overhead athlete.  To me, it seems like you only get symptoms with greater degrees of elevation, making the original Speed’s Test less sensitive in my hands.

  • Sensitivity: 90%, Specificity: 14%, PPV: 23%, NPV: 83% for the Speed’s test

 

Clunk and Crank Tests

clunk crank slap testThe clunk test is performed with the patient supine. The examiner places one hand on the posterior aspect of the glenohumeral joint while the other grasps the bicondylar aspect of the humerus at the elbow. The examiner’s proximal hand provides an anterior translation of the humeral head while simultaneously rotating the humerus externally with the hand holding the elbow.  The mechanism of this test is similar to that of a McMurray’s test of the knee menisci, where the examiner is attempting to trap the torn labrum between the glenoid and the humeral head. A positive test is produced by the presence of a clunk or grinding sound and is indicative of a labral tear.

The crank test can be performed with the patient either sitting or supine. The shoulder is elevated to 160 degrees in the plane of the scapula. An axial load is then applied by the examiner while the humerus is internally and externally rotated in this position. A positive test typically elicits pain with external rotation. Symptomatic clicking or grinding may also be present during this maneuver.  These tests seem to do well with finding a bucket-handle tear of from a Type III or Type IV SLAP lesion more than anything else for me.

  • Sensitivity: 39-91%, Specificity: 56-93%, PPV: 41-94%, NPV: 29-90%

 

 

2 New(er) Special Tests for SLAP Lesions

In addition to the classic SLAP tests that have been described, there are two additional tests that gained popularity more recently.

I wanted share a video that I have on YouTube that demonstrates these two tests. These were actually published in a paper I wrote in JOSPT a few years ago, but I have modified them a little and wanted to share. These two tests are both excellent at detecting peel-back SLAP lesions, specifically in overhead throwing athletes, but are useful for any population. I share these two tests because I know that there is a lot of confusion regarding the “best” test. These may not be them, but in my hands, both have been extremely helpful and, more importantly, accurate.

Pronated Load SLAP Test

The first test is the “Pronated Load Test,” it is performed in the supine position with the shoulder abducted to 90° and externally rotated. However, the forearm is in a fully pronated position to increase tension on the biceps and subsequently the labral attachment. When maximal external rotation is achieved, the patient is instructed to perform a resisted isometric contraction of the biceps to simulate the peel-back mechanism. This test combines the active bicipital contraction of the biceps load test with the passive external rotation in the pronated position, which elongates the biceps. A positive test is indicated by discomfort within the shoulder.

 

Resisted Supination External Rotation SLAP Test

The second test was described by Myers in AJSM, called the “Resisted Supination External Rotation Test.” Dr. Myers was a fellow at ASMI and a good friend of mine, he really wanted to call this the SUPER test (for SUPination ER) but I was one of many that advised him against this for obvious reasons!

During this test, the patient is positioned in 90° of shoulder abduction, and 65-70° of elbow flexion and the forearm in neutral position. The examiner resists against a maximal supination effort while passively externally rotating the shoulder. Myers noted that this test simulates the peel-back mechanism of SLAP injuries by placing maximal tension on the long head of the biceps by supinating.

Myers’ study of 40 patients revealed that this test had better sensitivity (82.8%), specificity (81.8%), positive predictive value (PPV) (92.3%), negative predictive value (NPV) (64.3%), and diagnostic accuracy (82.5%) compared to the crank test and extremely popular O’Brien’s or active compression test. A positive test is indicated by discomfort within the shoulder.

 

When Do You Perform These Tests?

Now that you know a bunch of special tests for SLAP tears, the real key is understanding “when” to pick each test.  In my mind, they all are slightly different and may even be better at detecting different types of SLAP lesions.  I have an Inner Circle webinar that discusses this and shows you my clinical algorithm on how and why I perform special tests to diagnose a SLAP tear:

 

 

Learn Exactly How I Evaluate and Treat the Shoulder

shoulder seminarIf you want to learn even more about the shoulder, my online course at ShoulderSeminar.com will teach you exactly how I evaluate and treat the shoulder.  It is packed with tons of educational content that will help you master the shoulder, including detailed information on the clinical examination and treatment of SLAP tears.

 

 

 

Special Tests to Diagnose SLAP Tears

The latest Inner Circle webinar recording on Special Tests to Diagnose SLAP Tears is now available.

 

 

Special Tests to Diagnose SLAP Tears

This month’s Inner Circle webinar is on Special Tests to Diagnose SLAP Tears.  In this presentation, I review the many, many different SLAP special tests that exist and explain when and why you would choose certain ones for different people.

This webinar will cover:

  • Why there are so many different SLAP special tests
  • The common mechanisms of injury for SLAP tears
  • Why a good subjective history should lead your clinical examination
  • How to choose specific special tests for specific people
  • How to perform my most commonly used SLAP tests

To access this webinar:

 

 

How do SLAP Tears Occur: Mechanisms of Injury to the Superior Labrum

**Updated in 2017**

How does a SLAP Tear of the shoulder occur?

That’s a common question I here often.  Now that we have discussed the different types and classification of SLAP tears to the superior labrum, I wanted to now talk about how these shoulder injuries occur. There are several injury mechanisms that are speculated to be responsible for creating a SLAP lesion. These mechanisms range from single traumatic events to repetitive microtraumatic injuries.

This article is part of a 4-part series on SLAP Lesions

 

Traumatic SLAP Injuries

mechanism of slap tearTraumatic events, such as falling on an outstretched arm or bracing oneself during a motor vehicle accident, may result in a SLAP lesion due to compression of the superior joint surfaces superimposed with subluxation of the humeral head. Snyder referred to this as a pinching mechanism of injury. Other traumatic injury mechanisms include direct blows, falling onto the point of the shoulder, and forceful traction injuries of the upper extremity.

To be honest with you, I don’t know if this is actually the underlying cause of the SLAP lesion. I have questioned this theory in the past and don’t know the answer, but part of me at least wonders if these patients already had a certain degree of pathology to their superior labrum and the acute injury led to a MRI and diagnosis of a SLAP tear.

Essentially the MRI may have found an old SLAP tear.

 

Repetitive Overhead Activities

Repetitive overhead activity, such as throwing a baseball and other overhead sports, is another common mechanism of injury frequently responsible for producing SLAP injuries.

This is the type of SLAP lesion that we most often see in our athletes. In 1985, Dr. Andrews first hypothesized that SLAP pathology in overhead throwing athletes was the result of the high eccentric activity of the biceps brachii during the arm deceleration and follow-through phases of the overhead throw. To determine this, they applied electrical stimulation to the biceps during arthroscopic evaluation and noted that the biceps contraction raised the labrum off of the glenoid rim.

Peel Back SLAP Tear

Burkhart and Morgan have since hypothesized a “peel back” mechanism that produces SLAP lesion in the overhead athlete. They suggest that when the shoulder is placed in a position of abduction and maximal external rotation, the rotation produces a twist at the base of the biceps, transmitting torsional force to the anchor.

This mechanism has received a lot of attention and several studies seem to show its accuracy.

Pradham measured superior labral strain in a cadaveric model during each phase of the throwing motion. They noted that increased superior labral strain occurred during the late-cocking phase of throwing.

Another study from ASMI simulated each of these mechanisms using cadaveric models. Nine pairs of cadaveric shoulders were loaded to biceps anchor complex failure in either a position of simulated in-line loading (similar to the deceleration phase of throwing) or simulated peel back mechanism (similar to the cocking phase of overhead throwing). Results showed that 7 of 8 of the in-line loading group failed in the midsubstance of the biceps tendon with 1 of 8 fracturing at the supraglenoid tubercle. However, all 8 of the simulated peel back group failures resulted in a type II SLAP lesion. The ultimate strength of the biceps anchor was significantly different when the 2 loading techniques were compared. The biceps anchor demonstrated significantly higher ultimate strength with the in-line loading (508 N) as opposed to the ultimate strength seen during the peel back loading mechanism (202 N).

You can see photos of the study below.  The first photo is a normal glenoid with the labrum and attaching long head of the biceps.  The second photo is the simulation of the traction and eccentric biceps contraction.  The final photo is simulation of the peel-back lesion.

In theory, SLAP lesions most likely occur in overhead athletes from a combination of these 2 previously described forces. The eccentric biceps activity during deceleration may serve to weaken the biceps-labrum complex, while the torsional peel back force may result in the posterosuperior detachment of the labral anchor.

 

 

shoulder seminarLearn Exactly How I Evaluate and Treat the Shoulder

If you want to learn even more about the shoulder, my online course at ShoulderSeminar.com will teach you exactly how I evaluate and treat the shoulder.  It is packed with tons of educational content that will help you master the shoulder, including detailed information on the clinical examination and treatment of SLAP tears.

 

 

 

What Exactly Is a SLAP Tear? Top 5 Things You Need to Know About a Superior Labral Lesion

Superior Labral SLAP Tear**Updated in 2017**

A very common diagnosis for shoulder injuries is a superior labral tear, or SLAP tear.  SLAP stands for Superior Labral tear Anterior to Posterior.  There many different variations of SLAP tears, which have different levels of severity and treatment strategies.  Back in the day, surgeons would want to operate on all SLAP tears but we learned that some do well without surgery.  In fact, some SLAP tears aren’t even worrisome .

Understanding how a SLAP lesion occurs and what exactly is happening pathologically is extremely important to diagnose and treat these shoulder injuries appropriately.

This article is part of a 4-part series on SLAP Lesions

 

Classification of SLAP Lesions

As you can see in the figure, the long head of the biceps tendon inserts directly into the superior labrum.  There are several variations of injuries that can occur to the superior labrum where the biceps anchor attaches.

Following a retrospective review of 700 shoulder arthroscopies, Snyder et al: Arthroscopy 1990, identified 4 types of superior labrum lesions involving the biceps anchor. Collectively they termed these SLAP lesions, in reference to their anatomic location: Superior Labrum extending from Anterior to Posterior. This was the original definition but as we continue to learn more about SLAP tears, they certainly do not always extend from anterior to posterior. But, the most important concept to know is that a SLAP lesion is an injury to the superior labrum near the attachment of the biceps anchor.

SLAP Tear Classification

Type I SLAP Lesions

Type I SLAP lesions were described as being indicative of isolated fraying of the superior labrum with a firm attachment of the labrum to the glenoid. These lesions are typically degenerative in nature. At this time, it is currently believed that the majority of the active population may have a Type I SLAP lesion and this is often not even considered pathological by many surgeons.

 

Type II SLAP Lesions

Type II SLAP lesions are characterized by a detachment of the superior labrum and the origin of the tendon of the long head of the biceps brachii from the glenoid resulting in instability of the biceps-labral anchor. These is the most common type of SLAP tear. When we receive a script from a surgeon to treat a “SLAP repair” he or she is more than likely talking about a Type II SLAP and surgery to re-attach the labrum and biceps anchor.

Three distinct sub-categories of type II SLAP lesions have been further identified by Morgan et al: Arthroscopy ’90. They reported that in a series of 102 patients undergoing arthroscopic evaluation 37% presented with an anterosuperior lesion, 31% with a posterosuperior lesion, and 31% exhibited a combined anterior and superior lesion.

These findings are consistent with my clinical observations of patients. Different types of patients and mechanisms of injuries will result in slightly different Type II lesions. For example, the majority of overhead athletes present with posterosuperior lesions while individuals who have traumatic SLAP lesions typically present with anterosuperior lesions. These variations are important when selecting which special tests to perform based on the patient’s history and mechanism of injury.

 

Type III SLAP Lesions

Type III SLAP lesions are characterized by a bucket-handle tear of the labrum with an intact biceps insertion. The labrum tears and flips into the joint similar to a meniscus. The important concept here is that the biceps anchor is attached, unlike a Type II.

 

Type IV SLAP Lesions

Type IV SLAP lesions have a bucket-handle tear of the labrum that extends into the biceps tendon. In this lesion, instability of the biceps-labrum anchor is also present, similar to that seen in the type II SLAP lesion. This is basically a combination of a Type II and III lesion.

What is complicated about this classification system is the fact that the Type I-IV scale is not progressively more severe. For example a Type III SLAP lesion is not bigger, or more severe, or indicative to more pathology than a Type II SLAP lesion.
To further complicate things, Maffet et al: AJSM ’95 noted that 38% of the SLAP lesions identified in their retrospective review of 712 arthroscopies were not classifiable using the I-IV terminology previously defined by Snyder. They suggested expanding the classification scale for SLAP lesions to a total of 7 categories, adding descriptions for types V-VII.
  • Type V SLAP lesions are characterized by the presence of a Bankart lesion of the anterior capsule that extends into the anterior superior labrum.
  • Type VI SLAP lesion involve a disruption of the biceps tendon anchor with an anterior or posterior superior labral flap tear.
  • Type VII SLAP lesions are described as the extension of a SLAP lesion anteriorly to involve the area inferior to the middle glenohumeral ligament.

These 3 types typically involve a concomitant pathology in conjunction with a SLAP lesion. Although they provided further classification, this terminology has not caught on and is not frequently used. For example, most people will refer to a Type V SLAP as a Type II SLAP with a concomitant Bankart lesion.

Since then there have been even more classification types described in the literature, up to at least 10 that I know of, but don’t worry, nobody really uses them.

 

Top 5 things you need to know about classifying SLAP lesions

Here’s all you need to know about classifying SLAP tears:

  1. Just worry about Type I-IV SLAP lesions and realize that any classification system above Type IV just means that there was a concomitant injury in addition to the SLAP tear.
  2. You can break down and group Type I and Type III lesions together. Both involved degeneration of the labrum but the biceps anchor is attached. Thus, these are not unstable SLAP lesions and are not surgically repaired. This makes surgery (just a simple debridement) and physical therapy easier.
  3. You can also break down and group Type II and Type IV lesions together. Both involve a detached biceps anchor and require surgery to stabilize the biceps anchor. Type IV SLAP tears are much more uncommon and will involve the repair and a debridement of the bucket handle tear.
  4. Type II lesions are by far the most common that you will see in the clinic and are almost always what a surgeon is referring to when speaking of a “SLAP repair.”  That being said, we are seeing trends towards NOT repairing SLAP II lesions, as they may be more common than once expected.  This is especially true in overhead athletes.
  5. We all may have a Type I lesion, it is basically just fraying and degeneration of the labrum.

 

 

shoulder seminarLearn Exactly How I Evaluate and Treat the Shoulder

If you want to learn even more about the shoulder, my online course at ShoulderSeminar.com will teach you exactly how I evaluate and treat the shoulder.  It is packed with tons of educational content that will help you master the shoulder, including detailed information on the clinical examination and treatment of SLAP tears.

 

 

 

Humeral Fracture Following Biceps Tenodesis in a Baseball Pitcher

At this year’s ASMI Injuries in Baseball course, one of the topics that we discussed at length was the use of biceps tendodesis in baseball pitchers.  Over the years, our understanding of SLAP lesions has evolved and many are advocating a biceps tenodesis procedure.  While this may be a viable option for older individuals, I have never been a fan of this in athletes that need to use their shoulder at maximum range of motion and velocity.  I just don’t think the concept of “if it hurts just cut if off” makes the most sense to me.

SEE ALSO: Is Biceps Tenodesis the Answer?

A recent case report in AJSM actually describes one of the biggest reasons why I am think we really need to question the use of biceps tenodesis in baseball pitchers: A humeral fracture.

humerus fracture after biceps tenodesis

The white arrow is the drill hole from the biceps tenodesis.  This came up at the ASMI course with the panel of surgeons, including Dr. James Andrews, Dr. Lyle Cain, and Dr. Xavier Duralde of the Braves.  The rotational torque observed on the humerus while pitching are extremely high.  Putting a screw in there scares me a bit.

SEE ALSO: Dr. Lyle Cain from the American Sports Medicine Institute discusses some facts and fiction related to the biceps tenodesis surgery.

What do you think?  Does this x-ray of a humeral fracture following a biceps tenodesis in a baseball pitcher scare you a little too?

Internal Impingement – What it is and How to Diagnose

Internal Impingement

The latest webinar recording for Inner Circle members is now available below.

Internal Impingement – What it is and How to Diagnose

This month’s Inner Circle webinars discussed a one of the most requested topics to date and featured a TON of people online live!  We’ll cover:

  • What is internal impingement?
  • The difference between internal and subacromial impingement
  • Anatomical, biomechanical, and pathological reasons for developing internal impingement
  • What do athlete’s that have internal impingement feel?
  • The #1 test to perform to diagnose internal impingement
  • What else you should look for on examination to develop the best treatment program

The topic is so big, I need to break it down into 2 parts.  This first part will cover the etiology and diagnosis.  I will follow this up in the upcoming months with an entire webinar dedicated to how to treat internal impingement.

To access the webinar, please be sure you are logged in and are a member of the Inner Circle program.

 

 

Is a Biceps Tenodesis the Answer?

I read a lot of stuff on the internet.  I like to keep up with a ton of blogs, websites, and journals to make sure I am on top of recent trends, but also to share with my readers.  I recently came across an article at Science Direct entitled Getting Athletes Back in the Game Sooner Following Shoulder Injuries.  Nice headline, right?  It made me want to click.

Interestingly, they were talking about how a biceps tenodesis can cut down the rehabilitation time from SLAP tears in comparison to a SLAP repair.  That wasn’t what I was expecting!

OK, would a tenodesis cut down (no pun intended…) the rehab time in comparison to a SLAP repair?  No doubt, I agree with that.  But I am not sure if this is what we want to do, especially in athletes, as the title of the article suggested.  Let’s dig into this deeper, but first, let’s discuss SLAP tears and what the biceps tenodesis surgery actually does.

 

What is a SLAP Tear and Biceps Tenodesis?

biceps labral complexI’ve covered superior labral tears, or SLAP tears extensively in the past.  If you don’t know much about SLAP tears, start there, but essentially a SLAP tear is a superior labral tear at the junction of where the long head of the biceps comes in and attaches to the superior labrum.  SLAP tears are common, and can be especially troublesome for overhead athletes.  (Photo from Wikipedia)

A biceps tenodesis is a surgical procedure that detaches the biceps attachment from the superior labrum and reattaches it to the humerus.  Here is a surgical demonstration from Smith and Nephew:

 

By removing the biceps, this essentially eliminates the patient’s pain from the SLAP lesion or biceps tendonitis, however at what consequence?  By performing a tenodesis, you are changing the anatomy of the shoulder and the function of the biceps.  This procedure has become more popular in older individuals, essentially those that chose a decrease in function for a decrease in pain.  But what about athletes, as the paper I mentioned above proposed was happening, can they return to sports faster by simply cutting the biceps off instead of trying to repair it?

One of the most popular studies on this subject was in AJSM in 2009.  The authors reported that the results of biceps tenodesis were superior to SLAP repairs in athletes with superior labral tears.  The authors mention both “overhead athletes” and “return to sport” in the paper, though they report the age range of subjects was 24-69 years old.  Furthermore, significant differences in age existed between the two groups, with the mean age of 37 years old in the SLAP repair group and mean age of 52 years old in the biceps tenodesis group.  One could certainly argue that the level of “sport” participation was different between the groups and could certainly influence their subjective satisfaction.

 

What is the Function of the Biceps?

Biomechanical studies have shown that the biceps labrum complex has a role in providing both translational and rotational stability, and that repair of a SLAP lesion restores this ability to provide static stability.  This is especially true in overhead athletes who need to use their arm in the abducted and externally rotated position.  Contraction of the long head of the biceps in this position has been shown to reduce anterior humeral head displacement, a functional that is critical in preventing throwing injuries.  In fact, peak biceps EMG activity has been shown to occur during this cocking phase of throwing, and has been shown to be higher in pitchers that have anterior instability.

Also, don’t forget that release of the long head of the biceps has been shown to increase superior humeral head migration by over 15%.

As all my readers know, superior humeral head migration is disadvantageous and causes many of the dysfunctions we see with the shoulder.  Our whole goal of most shoulder rehabilitation programs is to train the rotator cuff to dynamically stabilize to resist superior humeral head migration.  I’ve written about the role of rotator cuff fatigue in shoulder mechanics and how rotator cuff fatigue increases superior humeral head migration.

So if the biceps is involved with translational and rotational glenohumeral stability and helps prevent superior humeral head migration, is this something you want to sacrifice just to reduce pain?  How will this impact function, and more importantly, future injuries?

 

Is a Biceps Tenodesis the Answer?

Is there a role for biceps tenodesis?  I am sure there is.  I like the recommendations my friend Brian Busconi reports in this paper, stating that he likes to perform SLAP repairs, but will consider biceps tenodesis in patients over the age of 45.  This serves a different purpose and return to high level athletics is probably not as important to the patient than reducing their pain.  I have heard Dr. Altchek from New York report in meetings that he thinks biceps tenodesis may be an option, but one he reserves for those who fail a SLAP repair.   Still, I have to wonder what the long term effects of the biceps tenodesis will do on this patient population as well.  Will the increased superior humeral head cause rotator cuff pathology or degenerative changes?  Only time will tell.

There is also recent chatter about the use of the biceps tenodesis procedure in overhead athletes and the risk of humeral head fracture.  This is a consequence that must be considered.

Noted orthopedist, Dr. James Andrews was recently asked about the biceps and the potential for biceps tenodesis, to which he replied “The biceps is there for a purpose — it’s too intrinsically associated with the shoulder joint.  Until we know what the real function of it is, we’re stabbing in the dark.”  When asked if a biceps tenodesis is the answer to athletes returning to sport, similar to a Tommy John procedure, he replied “With Tommy John surgery, we’re actually restoring anatomy. In the case of biceps tenodesis, you’re deleting anatomy.”

SEE ALSO: Dr. Lyle Cain from Dr. Andrews’ American Sports Medicine Institute discusses some of the facts and fiction related to the biceps tenodesis surgery.

So, sadly, I don’t think we all learned a great new way “get athletes back in the game sooner following shoulder injuries” like the Science Direct title would suggest.  Perhaps I’m wrong, but I would have to agree with Dr. Andrews, I always prefer procedures that restore anatomy when possible.  Don’t get me wrong, a biceps tenodesis has it’s place.  But I’m not sure if it is the magical secret to getting athletes back faster, there just has to be some consequences.

What has your experience been?  Have you seen many athletes opt for a biceps tenodesis rather than a SLAP repair?

 

 

[hr]

Subscapularis Release for Loss of External Rotation

image We have a great guest post today from my friend Trevor Winnegge.  Trevor wrote a nice article last year on complications following distal radius fractures that ranked as my number 1 guest post in 2009!  This time, he presents the results of really nice case series on restoring external rotation ROM using subscapularis release massage techniques.  Great idea and some common manual techniques that I use as well with all of my patients.  Thanks Trevor!

The Role of Soft Tissue Mobilization to Subscapularis to Improve External Rotation in a Type II SLAP Repair-A Case Series

Our clinic is a smaller clinic and doesn’t have the time or resources for a full research study but we did have the opportunity to perform a very small pilot study/case series. I decided to contribute this information because I think it is an underutilized technique and is valuable in assisting our post operative shoulder patients.

We looked at the role that subscapularis has on limiting external rotation (ER) in a post operative shoulder patient. Given that subscapularis is an internal rotator and also assists with some adduction, it is stretched with abduction and ER of the shoulder[1]. Many shoulder surgeries place the patient in a sling in the internally rotated position to some degree. Standard Type II SLAP repair protocols limit the passive range of motion (PROM) into ER to anywhere from 0-30 degrees for the first four weeks, limiting the ability of the subscapularis to stretch[2]. Therefore, we felt if we could perform soft tissue mobilization to the subscapularis in the initial post operative period while range of motion is limited, then they would be less stiff once they were allowed to progress into ER. To my knowledge there has been only one study to date looking at the role of soft tissue mobilization to subscapularis on improving ER and that was published in JOSPT in December of 2003[3]. In that study, conducted by Godges et al, they excluded any patient that was in the immediate four week post operative healing phase. We felt that this immediate healing phase is when we can be most successful at preventing excessive subscapularis tightness by performing soft tissue mobilization, thereby improving ER ROM once they are allowed to progress past 30 degrees of ER.

 

Research Design

We took four patients (two males, two females) between the ages of 17 and 26 who had undergone primary Type II SLAP repair and randomly assigned them into two groups. The first group received standard ROM treatment for all motions and had ER ranged only to 30 degrees per the doctors protocol. The second group had the same exact treatment, however also received five minutes of subscapularis soft tissue mobilization[4]. Soft tissue mobilization was performed while the patient was in sidelying for the first one or two treatment sessions until the patient had enough abduction ROM to allow for good access to subscapularis in a supine position. The technique was using thumb or fingertips to hook inside the lateral border of the scapula and dig deep down between the scapula and ribs. A combination of deep pressure and soft tissue mobilization were performed for a total of five minutes. Every patient in each group was seen at the one week post operative timeframe and was seen twice a week for the next three weeks.

 

Video Demonstration

I do have two videos of the soft tissue techniques. The first is for the immediate post op patient while patient is in sidelying. The second video is while the patient is in supine. This video also incorporates the soft tissue technique with some elevation ROM.

 

 

 

Results

The results were as we had expected. The group that received the soft tissue mobilization had about twenty five more degrees of ER ROM (measured with goniometer in 45 degrees of abduction while supine) at the four week mark than did the group that did not receive the treatment.

Control Group-ER ROM

 

1 week post op

4 weeks post op

Subject 1

10 degrees

40 degrees

Subject 2

15 degrees

38 degrees

Intervention Group- ER ROM

 

1 week post op

4 weeks post op

Subject 1

12 degrees

64 degrees

Subject 2

15 degrees

63 degrees

 

I understand that these results should be taken with a grain of salt, as strong conclusions can not be made with such a small sample size. As I previously stated we simply do not have the time or resources in our clinic to perform a large scale study. It is my hope that someone reading this who works in a much larger center can take this information and use it as a stepping stone to a full blown research study. Clinically, I use these techniques on a daily basis and achieve great results. I truly feel the results of a larger study would be quite similar. What was also interesting is that shoulder elevation was also improved in the soft tissue mobilization group. This is likely due to the close proximity of the latissimus dorsi to the subscapularis, it is hard to truly isolate the subscapularis. We focused on SLAP repairs, but Bankart repairs could also benefit from this as well as rotator cuff repair patients who require sling use for extended amounts of time, provided a subscapularis repair wasn’t performed. I think the possibilities for research in this area are endless and I would love to see it published as a large research study. Please give me any feedback if you currently use this technique, or tried it after reading this. It really works well.

clip_image001Trevor has been practicing PT for over 9 years. He graduated from Northeastern University with a bachelors in PT and a master of science degree. He also graduated from Temple University with a Doctor of physical therapy degree. He is a board certified specialist in orthopedics and also a certified strength and conditioning specialist. He is adjunct faculty at Northeastern University, teaching courses in orthopedics and differential diagnosis. He is currently the Clinical Coordinator of Rehabilitation at Sturdy Orthopedics and Sports Medicine Associates in Attleboro MA.


[1] Palastanga, et al. Anatomy and Human Movement. Boston MA:Butterworth Heineman; 1993.

[2] Wilk K, Reinold M, Andrews J. Postoperative Treatment Principles in the Throwing Athlete. Sports Medicine and Arthroscopy Review. 2001;9:69-95.

[3] Godges et al. The Immediate Effects of Soft Tissue Mobilization with Proprioceptive neuromuscular Facilitation on Glenohumeral External rotation and Overhead reach. JOSPT. 2003; 12: 713-718.

[4] Travell J, Simons D. Myofascial Pain and Dysfunction: The Trigger Point Manual. Baltimore MD:Williams and Wilkins; 1983.